Source code for datumaro.plugins.openvino_plugin.samples.mobilenet_v2_pytorch_interp

# Copyright (C) 2021 Intel Corporation
#
# SPDX-License-Identifier: MIT

from datumaro.components.annotation import (
    AnnotationType, Label, LabelCategories,
)
from datumaro.util.annotation_util import softmax


[docs]def process_outputs(inputs, outputs): # inputs = model input; array or images; shape = (B, H, W, C) # outputs = model output; shape = (1, 1, N, 7); N is the number of detected bounding boxes. # det = [image_id, label(class id), conf, x_min, y_min, x_max, y_max] # results = conversion result; [[ Annotation, ... ], ... ] results = [] for input_, output in zip(inputs, outputs): # pylint: disable=unused-variable image_results = [] output = softmax(output).tolist() label = output.index(max(output)) image_results.append(Label(label=label, attributes={"scores": output})) results.append(image_results) return results
[docs]def get_categories(): # output categories - label map etc. label_categories = LabelCategories() with open("samples/imagenet.class", "r", encoding='utf-8') as file: for line in file.readlines(): label = line.strip() label_categories.add(label) return {AnnotationType.label: label_categories}