# Getting started no_list: true To read about the design concept and features of Datumaro, go to the [design section](/docs/design/). ## Installation ### Dependencies - Python (3.7+) - Optional: OpenVINO, TensorFlow, PyTorch, MxNet, Caffe, Accuracy Checker Optionally, create a virtual environment: ``` bash python -m pip install virtualenv python -m virtualenv venv . venv/bin/activate ``` Install Datumaro package: ``` bash pip install datumaro[default] ``` Read full installation instructions in [the user manual](/docs/user-manual/installation). ## Usage There are several options available: - [A standalone command-line tool](#standalone-tool) - [A python module](#python-module) ### Standalone tool Datuaro as a standalone tool allows to do various dataset operations from the command line interface: ``` bash datum --help python -m datumaro --help ``` ### Python module Datumaro can be used in custom scripts as a Python module. Used this way, it allows to use its features from an existing codebase, enabling dataset reading, exporting and iteration capabilities, simplifying integration of custom formats and providing high performance operations: ``` python from datumaro.components.project import Project # load a Datumaro project project = Project('directory') # create a dataset dataset = project.working_tree.make_dataset() # keep only annotated images dataset.select(lambda item: len(item.annotations) != 0) # change dataset labels dataset.transform('remap_labels', {'cat': 'dog', # rename cat to dog 'truck': 'car', # rename truck to car 'person': '', # remove this label }, default='delete') # remove everything else # iterate over dataset elements for item in dataset: print(item.id, item.annotations) # export the resulting dataset in COCO format dataset.export('dst/dir', 'coco') # optionally, release the project resources project.close() ``` > Check our [developer manual](/docs/developer_manual/) for additional information. ## Examples - Convert PASCAL VOC dataset to COCO format, keep only images with `cat` class presented: ```bash # Download VOC dataset: # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar datum convert --input-format voc --input-path \ --output-format coco \ --filter '/item[annotation/label="cat"]' \ -- --reindex 1 # avoid annotation id conflicts ``` - Convert only non-`occluded` annotations from a [CVAT](https://github.com/openvinotoolkit/cvat) project to TFrecord: ```bash # export Datumaro dataset in CVAT UI, extract somewhere, go to the project dir datum filter -e '/item/annotation[occluded="False"]' --mode items+anno datum export --format tf_detection_api -- --save-images ``` - Annotate MS COCO dataset, extract image subset, re-annotate it in [CVAT](https://github.com/openvinotoolkit/cvat), update old dataset: ```bash # Download COCO dataset http://cocodataset.org/#download # Put images to coco/images/ and annotations to coco/annotations/ datum create datum import --format coco datum export --filter '/image[images_I_dont_like]' --format cvat # import dataset and images to CVAT, re-annotate # export Datumaro project, extract to 'reannotation-upd' datum project update reannotation-upd datum export --format coco ``` - Annotate instance polygons in [CVAT](https://github.com/openvinotoolkit/cvat), export as masks in COCO: ```bash datum convert --input-format cvat --input-path \ --output-format coco -- --segmentation-mode masks ``` - Apply an OpenVINO detection model to some COCO-like dataset, then compare annotations with ground truth and visualize in TensorBoard: ```bash datum create datum import --format coco # create model results interpretation script datum model add -n mymodel openvino \ --weights model.bin --description model.xml \ --interpretation-script parse_results.py datum model run --model -n mymodel --output-dir mymodel_inference/ datum diff mymodel_inference/ --format tensorboard --output-dir diff ``` - Change colors in PASCAL VOC-like `.png` masks: ```bash datum create datum import --format voc # Create a color map file with desired colors: # # label : color_rgb : parts : actions # cat:0,0,255:: # dog:255,0,0:: # # Save as mycolormap.txt datum export --format voc_segmentation -- --label-map mycolormap.txt # add "--apply-colormap=0" to save grayscale (indexed) masks # check "--help" option for more info # use "datum --loglevel debug" for extra conversion info ``` - Create a custom COCO-like dataset: ```python import numpy as np from datumaro.components.annotation import ( AnnotationType, Bbox, LabelCategories, ) from datumaro.components.extractor import DatasetItem from datumaro.components.dataset import Dataset dataset = Dataset([ DatasetItem(id=0, image=np.ones((5, 5, 3)), annotations=[ Bbox(1, 2, 3, 4, label=0), ] ), # ... ], categories=['cat', 'dog']) dataset.export('test_dataset/', 'coco') ```