OpenVINO™ Inference Interpreter
Interpreter samples to parse OpenVINO™ inference outputs This section on GitHub’
Models supported from interpreter samples
There are detection and image classification examples.
Detection (SSD-based)
Intel Pre-trained Models > Object Detection
Public Pre-Trained Models(OMZ) > Object Detection
Image Classification
Public Pre-Trained Models(OMZ) > Classification
You can find more OpenVINO™ Trained Models here To run the inference with OpenVINO™, the model format should be Intermediate Representation(IR). For the Caffe/TensorFlow/MXNet/Kaldi/ONNX models, please see the Model Conversion Instruction
You need to implement your own interpreter samples to support the other OpenVINO™ Trained Models.
Model download
Prerequisites:
OpenVINO™ (To install OpenVINO™, please see the OpenVINO™ Installation Instruction)
OpenVINO™ models (To download OpenVINO™ models, please see the Model Downloader Instruction)
PASCAL VOC 2012 dataset (To download VOC 2012 dataset, please go VOC2012 download)
Open Model Zoo models can be downloaded with the Model Downloader tool from OpenVINO™ distribution:
cd <openvino_dir>/deployment_tools/open_model_zoo/tools/downloader
./downloader.py --name <model_name>
Example: download the “face-detection-0200” model
cd /opt/intel/openvino/deployment_tools/open_model_zoo/tools/downloader
./downloader.py --name face-detection-0200
Model inference
Prerequisites:
OpenVINO™ (To install OpenVINO™, please see the OpenVINO™ Installation Instruction)
Datumaro (To install Datumaro, please see the User Manual)
OpenVINO™ models (To download OpenVINO™ models, please see the Model Downloader Instruction)
PASCAL VOC 2012 dataset (To download VOC 2012 dataset, please go VOC2012 download)
Examples
To run the inference with OpenVINO™ models and the interpreter samples, please follow the instructions below.
source <openvino_dir>/bin/setupvars.sh
datum create -o <proj_dir>
datum model add -l <launcher> -p <proj_dir> --copy -- \
-d <path/to/xml> -w <path/to/bin> -i <path/to/interpreter/script>
datum import -p <proj_dir> -f <format> <path_to_dataset>
datum model run -p <proj_dir> -m model-0
Detection: ssd_mobilenet_v2_coco
source /opt/intel/openvino/bin/setupvars.sh
cd datumaro/plugins/openvino_plugin
datum create -o proj
datum model add -l openvino -p proj --copy -- \
--output-layers=do_ExpandDims_conf/sigmoid \
-d model/ssd_mobilenet_v2_coco.xml \
-w model/ssd_mobilenet_v2_coco.bin \
-i samples/ssd_mobilenet_coco_detection_interp.py
datum import -p proj -f voc VOCdevkit/
datum model run -p proj -m model-0
Classification: mobilenet-v2-pytorch
source /opt/intel/openvino/bin/setupvars.sh
cd datumaro/plugins/openvino_plugin
datum create -o proj
datum model add -l openvino -p proj --copy -- \
-d model/mobilenet-v2-pytorch.xml \
-w model/mobilenet-v2-pytorch.bin \
-i samples/mobilenet_v2_pytorch_interp.py
datum import -p proj -f voc VOCdevkit/
datum model run -p proj -m model-0